Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Dipotassium tetrachromate(VI), $K_2Cr_4O_{13}$

Barbara M. Casari^a* and Vratislav Langer^b

^aDepartment of Chemistry, Inorganic Chemistry, Göteborg University, SE-41296 Göteborg, Sweden, and ^bDepartment of Chemical and Biological Engineering, Division of Materials and Surface Chemistry, Subdivision of Inorganic Environmental Chemistry, Chalmers University of Technology, SE-41296 Göteborg, Sweden Correspondence e-mail: casari@chem.gu.se

Received 30 August 2005 Accepted 1 November 2005 Online 30 November 2005

The structure of dipotassium tetrachromium(VI) tridecaoxide, $K_2Cr_4O_{13}$, has been determined from single-crystal X-ray data collected at 173 (2) K on a racemically twinned crystal with monoclinic *Pc* space-group symmetry. The structure is composed of discrete $[Cr_4O_{13}]^{2-}$ zigzag chains held together by the charge-balancing potassium ions. The conformations adopted by the tetrachromate anion in alkali metal salts and Cr_8O_{21} are different and can be divided into three categories.

Comment

CrO₃ derivatives are a field of current interest for surface finishing, which proceeds in systems containing CrO₃ dissolved in water. The structure of the predominant species in chromium electroplating baths has been investigated extensively (Radnai & Dorgai, 1992; Šarmaitis et al., 1996; Çengeloglu et al., 2003). These compounds are also continuing to attract interest (Carlsen et al., 1995; Islam et al., 2005; Karunakaran & Suresh, 2004) as they represent the most widely used group of oxidizing agents in organic chemistry, able to oxidize almost every organic functional group (Cainelli & Cardillo, 1984). Chromic acid is a common reagent but the active species in the oxidizing solutions may vary depending on the reaction conditions. The polymerization of the $[CrO_4]^{2-}$ units into corner-sharing dimers, trimers or longer chains is pH and concentration dependent (Sarmaitis et al., 1996). The deformation of the CrO₄ tetrahedra increases with the length of the chains (Gili & Lorenzo-Louis, 1999). Pressprich et al. (1988) studied and compared the Cr-O bond lengths within anions of the formula $[Cr_nO_{3n+1}]^{2-}$. They found that, with increasing polymerization, the average bridging bond length increases, while the average non-bridging bond length decreases. The structure of CrO₃ (Hanic & Štempelová, 1960; Stephens & Cruickshank, 1970) consists of infinite chains of corner-sharing CrO_4 tetrahedra, with the bridging Cr-O distances 0.15 Å longer than the mean terminal distance, resulting in deformed CrO₄ units. The structures of trichromate compounds consist of $[Cr_3O_{10}]^{2-}$ anions, together with inorganic cations (Mattes & Meschede, 1973; Kolitsch, 2003; Blum *et al.*, 1979; Blum & Guitel, 1980; Löfgren, 1974) or organic cations (Ding *et al.*, 2004; Stępień & Grabowski, 1977; Garrison *et al.*, 2001; Luis *et al.*, 1995; Fossé *et al.*, 2001). In these structures, the $[Cr_3O_{10}]^{2-}$ units adopt different conformations as a result of the diversity in packing (Casari & Langer, 2006).

Four compounds containing the tetrachromate unit have been structurally characterized before now, including three alkali metal salts and one mixed-valence binary oxide. The chemical analogues K₂Cr₄O₁₃ (Golovachev et al., 1970; Kuz'min et al., 1972), Rb₂Cr₄O₁₃ (Löfgren, 1971, 1973) and Cs₂Cr₄O₁₃ (Kolitsch, 2004) all belong to the monoclinic system, and have space groups Pc, $P2_1/c$ and $P2_1/n$, respectively. Blum & Tran Qui (1979) reported indexed powder diffraction data on (NH₄)₂Cr₄O₁₃ and assigned the space group to be P21/c, as determined for Rb2Cr4O13 (Löfgren, 1973) and unpublished work on K₂Cr₄O₁₃ by Löfgren. Doubts about both the space-group assignment and the unit-cell parameters of the K₂Cr₄O₁₃ structure were expressed by Kolitsch (2004). Furthermore, neither s.u. values nor anisotropic displacement parameters are given in the papers (Golovachev et al., 1970; Kuz'min et al., 1972), and an R value of 0.108 was reported, based on film data. We present here a redetermination of the structure of K₂Cr₄O₁₃.

The K₂Cr₄O₁₃ structure belongs to the non-centrosymmetric space group Pc, while the other three chemical analogues belong to space group $P2_1/c$, with unit cells doubled in the *a* direction (Löfgren, 1973; Kolitsch, 2004; Blum & Tran Qui, 1979). The reciprocal space was searched carefully for weak extra reflections, especially for h = (2n - 1)/2, but without success. The crystal under investigation was twinned by an inversion operation and the twin volume ratio was refined to 0.64 (3)/0.36 (3).

There are one discrete chromate tetramer and two nonequivalent potassium ions in the asymmetric unit of $K_2Cr_4O_{13}$ (Fig. 1). The tetrachromate ion, $[Cr_4O_{13}]^{2-}$, is composed of a chain of four CrO_4 tetrahedra, joined by shared corners. The Cr-O bridging distances, can be divided into two groups (Table 1). The two terminal CrO_4 units have longer Cr-Obridging distances [mean 1.834 (4) Å] than the two inner units [mean 1.74 (4) Å]. The non-bridging Cr-O bonding distances

Figure 1

The asymmetric unit of $K_2Cr_4O_{13}$, with atomic displacement ellipsoids drawn at the 50% probability level.

Figure 2 The packing in $K_2Cr_4O_{13}$.

A comparison of the packing in (a) $Cs_2Cr_4O_{13}$ (Kolitsch, 2004), (b) $Rb_2Cr_4O_{13}$ (Löfgren, 1973) and (c) $K_2Cr_4O_{13}$ (this work). The numbers 1 and 2 denote M1-M1 and M2-M2 cation pairs in (b) and (c).

Figure 4

The configuration of $[Cr_4O_{13}]^{2-}$ chains in (a) K₂Cr₄O₁₃ (this paper), (b) Cs₂Cr₄O₁₃ (Kolitsch, 2004) and (c) Cr₈O₂₁ (Norby *et al.*, 1991).

are significantly shorter [mean 1.605 (6) Å] (Fig. 1 and Table 1). Despite the variation of bond lengths, the mean Cr–O distance within the individual tetrahedra remains constant [1.66 (5) Å]. The $[Cr_4O_{13}]^{2-}$ anions form isolated zigzag chains in the *c* direction, whose charge is counterbalanced by the intercalating potassium ions (Fig. 2).

The two cations, K1 and K2, are irregularly coordinated (within 3.28 Å) by 11 and 10 O atoms, respectively (Table 1), but have similar mean K–O bond lengths [2.96 (3) Å]. The O atoms neighbouring each potassium ion belong to six different tetrachromate chains. The relatively high potassium coordination, compared with the ninefold coordination in K₂Cr₃O₁₀ (Blum *et al.*, 1979), may be attributed to the high oxygen/ potassium ratio (Löfgren, 1973) or to the packing features, as in the case of the 11-coordinate ammonium ions in α -(NH₄)₂Cr₃O₁₀ (Casari & Langer, 2006).

Comparing the structural arrangement in the tetrachromate analogues, it is evident that Cs₂Cr₄O₁₃ (Fig. 3a) differs from $Rb_2Cr_4O_{13}$ and $K_2Cr_4O_{13}$ (Figs. 3b and 3c). The latter are quite similar but contain different cation-cation distances for the Rb1-Rb1, Rb2-Rb2, K1-K1 and K2-K2 pairs (Figs. 3b and 3c). These distances vary by 0.111 (3) Å in $Rb_2Cr_4O_{13}$ and 0.038 (4) Å in $K_2Cr_4O_{13}$. Furthermore, every other tetrachromate group is rotated in Rb₂Cr₄O₁₃ compared with K₂Cr₄O₁₃, but the shapes of the tetrachromate chains are almost the same (Fig. 4a). In Cs₂Cr₄O₁₃, the packing of the $[Cr_4O_{13}]^{2-}$ anions and cations is different, as is the shape of the chromate chain (Fig. 4b). Structural data have so far been determined for only one other compound containing the $[Cr_4O_{13}]^{2-}$ unit, *i.e.* the mixed-valence Cr_8O_{21} oxide, which is better described as $Cr_2^{III}(Cr^{VI}O_4)_2(Cr_4^{VI}O_{13})$ (Norby *et al.*, 1991). In this compound, the tetrachromate chain adopts a third conformation (Fig. 4c), resembling a section of the onedimensional chains in CrO₃ (Hanic & Štempelová, 1960), except for the Cr-O-Cr angle of 180.0 (7)°.

Values of the Cr1-Cr2-Cr3-Cr4 torsion angles, and the Cr1-Cr2-Cr3 and Cr2-Cr3-Cr4 angles in tetrachromate structures, are presented in Table 2. In the nearly planar tetrachromate units, the Cr1-Cr2-Cr3 and Cr2-Cr3-Cr4 angles seem to occur in pairs of a small and a large angle. A combination of two extreme values [86.48 (2) and 127.29 (2)°] is encountered in the Cs₂Cr₄O₁₃ structure (Kolitsch, 2004). The Cr1-Cr2-Cr3 angles have also been examined in trichromates (Casari & Langer, 2006), which interestingly showed a range of angles between 86.85 (2) and 127.73 (4)°.

In summary, the structure of $K_2Cr_4O_{13}$ has been redetermined from a racemic twinned crystal and it has been shown that, even if the structure shows similarities with $Rb_2Cr_4O_{13}$ (Löfgren, 1973), the compounds are different enough to lead to a different unit cell and space group.

Experimental

Crystals of $K_2Cr_4O_{13}$ were formed during an attempt to prepare $Ce(CrO_4)_2$ ·H₂O and/or $Ce(CrO_4)_2$ ·2H₂O. $Ce(SO_4)_2$ ·4H₂O (1.50 g, 3.75 mmol) was dissolved in water (10 ml) and $Ce(OH)_4$ was precipitated with 15 *M* ammonia. $Ce(OH)_4$ (0.12 g 0.76 mmol) was added to a saturated solution of K_2CrO_4 (1.5 ml), and then concentrated

sulfuric acid was added until the cerium hydroxide was completely dissolved. This particular sample was left covered and unguarded and dark-orange–red crystals of $K_2Cr_4O_{13}$, suitable for single-crystal X-ray analysis, were obtained after nine months.

Mo Ka radiation

reflections

 $\theta = 2.4 - 33.0^{\circ}$

 $\mu = 4.30 \text{ mm}^{-1}$

T = 173 (2) K

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 0.69 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.84$ e Å⁻³

1935 Friedel pairs

Flack parameter: 0.64 (3)

Absolute structure: Flack (1983),

Rhomb, orange-red

 $0.06 \times 0.06 \times 0.04$ mm

Cell parameters from 3954

Crystal data

 $\begin{array}{l} {\rm K_2Cr_4O_{13}}\\ {M_r} = 494.20\\ {\rm Monoclinic,} \ Pc\\ a = 8.6165 \ (2) \ {\rm \AA}\\ b = 7.4725 \ (1) \ {\rm \AA}\\ c = 9.2811 \ (3) \ {\rm \AA}\\ \beta = 92.746 \ (2)^\circ\\ V = 596.89 \ (3) \ {\rm \AA}^3\\ Z = 2\\ D_x = 2.750 \ {\rm Mg \ m^{-3}} \end{array}$

Data collection

Siemens SMART 1K CCD areadetector diffractometer4076 independent reflections ω scans3268 reflections with $I > 2\sigma(I)$ ω scans $R_{int} = 0.045$ Absorption correction: multi-scan $\theta_{max} = 33.0^{\circ}$ (SADABS; Sheldrick, 2002) $h = -13 \rightarrow 13$ $T_{min} = 0.782, T_{max} = 0.847$ $k = -11 \rightarrow 10$ 7800 measured reflections $l = -14 \rightarrow 13$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.105$ S = 1.014076 reflections 173 parameters $w = 1/[\sigma^2(F_o^2) + (0.0471P)^2 + 0.0614P]$ where $P = (F_o^2 + 2F_c^2)/3$

Table 1

Selected interatomic distances (Å).

Cr1-O11	1.596 (4)	K1-O14 ⁱⁱ	3.189 (5)
Cr1-O12	1.835 (4)	$K1 - O21^{iii}$	2.884 (5)
Cr1-O13	1.605 (4)	K1-O21	3.273 (5)
Cr1-O14	1.604 (5)	K1-O23	3.094 (4)
Cr2-O12	1.719 (4)	$K1 - O41^{iv}$	2.768 (5)
Cr2-O21	1.594 (4)	$K1-O42^{v}$	2.777 (5)
Cr2-O22	1.590 (5)	K1-O43	3.188 (4)
Cr2-O23	1.753 (4)	K1-O44	2.921 (4)
Cr3-O23	1.783 (4)	K2-O11	2.751 (5)
Cr3-O31	1.582 (4)	K2-O12 ^{vi}	3.116 (4)
Cr3-O32	1.572 (4)	K2-O13 ^{vi}	2.892 (4)
Cr3-O43	1.694 (4)	K2–O14 ^{vii}	2.740 (5)
Cr4-O41	1.607 (5)	K2-O31 ^{iv}	2.896 (4)
Cr4-O42	1.604 (4)	K2-O31	3.246 (5)
Cr4-O43	1.833 (4)	K2-O32	2.988 (4)
Cr4-O44	1.615 (4)	K2–O42 ^{viii}	3.003 (5)
K1–O11 ⁱ	3.106 (5)	K2–O44 ^{ix}	2.825 (4)
K1-O13 ⁱⁱ	2.790 (5)	K2–O44 ^{viii}	2.937 (5)
K1-O13 ⁱ	2.831 (5)		

Symmetry codes: (i) x - 1, y, z; (ii) $x - 1, -y + 1, z + \frac{1}{2}$; (iii) $x, -y + 1, z + \frac{1}{2}$; (iv) $x, -y, z - \frac{1}{2}$; (v) x, y + 1, z; (vi) x, y - 1, z; (vii) $x, -y, z + \frac{1}{2}$; (viii) x + 1, y, z; (ix) $x + 1, -y, z - \frac{1}{2}$.

Data collection: *SMART* (Siemens, 1995); cell refinement: *SAINT* (Siemens, 1995); data reduction: *SAINT* and *SADABS* (Sheldrick, 2002); program(s) used to solve structure: *SHELXTL* (Bruker, 2001); program(s) used to refine structure: *SHELXTL*; molecular graphics: *DIAMOND* (Brandenburg, 2000); software used to prepare material for publication: *SHELXTL*.

Table 2

A comparison of intrapolyhedral angles (°) for the different conformations of the $[Cr_4O_{13}]^{2-}$ units.

Angle	$K_2Cr_4O_{13}{}^a$	Rb ₂ Cr ₄ O ₁₃ ^b	$Cs_2Cr_4O_{13}{}^c$	$\operatorname{Cr}_8\operatorname{O}_{21}^d$
Cr1-Cr2-Cr3-Cr4	172.99 (3)	172.30 (5)	177.58 (2)	180.0 (9)
Cr1-Cr2-Cr3	94.06 (3)	96.05 (5)	86.48 (2)	117.5 (5)
Cr2-Cr3-Cr4	121.45 (3)	122.33 (5)	127.29 (2)	117.5 (5)
Cr2-O-Cr3	138.0 (3)	139.3 (4)	131.6 (2)	180.0 (7)

Notes: (a) this work; (b) Löfgren (1973); (c) Kolitsch (2004); (d) Norby et al. (1991).

The authors thank Uwe Kolitsch for a constructive review of an early draft of this paper.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BC1081). Services for accessing these data are described at the back of the journal.

References

- Blum, D., Averbuch-Pouchot, M. T. & Guitel, J. C. (1979). Acta Cryst. B35, 454–456.
- Blum, D. & Guitel, J. C. (1980). Acta Cryst. B36, 135-137.
- Blum, D. & Tran Qui, D. (1979). J. Appl. Cryst. 12, 608-609.
- Brandenburg, K. (2000). *DIAMOND*. Version 2.1c. Crystal Impact GbR, Bonn, Germany.
- Bruker (2001). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cainelli, G. & Cardillo, G. (1984). Chromium Oxidations in Organic Chemistry. Berlin: Springer.
- Carlsen, P. H. J., Kjaerstad, C. & Aasbø, K. (1995). Acta Chem. Scand. 49, 152– 154.
- Casari, B. M. & Langer, V. (2006). Solid State Sci. Submitted.
- Çengeloglu, Y., Tor, A., Kir, E. & Ersöz, M. (2003). Desalination, 154, 239–246.
 Ding, C. R., Jin, Z. M., Wang, H. B., Hu, M. L. & Lin, H. (2004). Acta Cryst. C60. m203–m204.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Fossé, N., Joubert, O., Ganne, M. & Brohan, L. (2001). Solid State Sci. 3, 121-132.
- Garrison, J. C., Simons, R. S., Talley, J. M., Wesdemiotis, C., Tessier, C. A. & Youngs, W. J. (2001). Organometallics, 20, 1276–1278.
- Gili, P. & Lorenzo-Louis, P. A. (1999). Coord. Chem. Rev. 193-195, 747-768.
- Golovachev, V. P., Kuz'min, E. A., Kharitonov, Yu. A. & Belov, N. V. (1970). Dokl. Akad. Nauk. 192, 1272–1274.
- Hanic, F. & Štempelová, D. (1960). Chem. Zvesti, 14, 165–176.
- Islam, M., Saha, B. & Das, A. K. (2005). J. Mol. Catal. A, 236, 260–266.
- Karunakaran, C. & Suresh, S. (2004). J. Phys. Org. Chem. 17, 88-93.
- Kolitsch, U. (2003). Acta Cryst. E59, i164–i166.
- Kolitsch, U. (2004). Acta Cryst. C60, i17–i19.
- Kuz'min, E. A., Golovachev, V. P., Kharitonov, Yu. A. & Belov, N. V. (1972). *Kristallografiya*, 17, 929–933.
- Löfgren, P. (1971). Acta Chem. Scand. 25, 3893-3894.
- Löfgren, P. (1973). Acta Cryst. B29, 2141-2147.
- Löfgren, P. (1974). Chem. Scr. 5, 91-96.
- Luis, P. A. L., Martin-Zarza, P., Gili, P., Arrieta, J. M., Germain, G. & Dupont, L. (1995). Eur. J. Solid State Inorg. Chem. 32, 353–360.
- Mattes, R. & Meschede, W. (1973). Z. Anorg. Allg. Chem. 395, 216-222.
- Norby, P., Nørlund Christensen, A., Fjellvåg, H. & Nielsen, M. (1991). J. Solid State Chem. 94, 281–293.
- Pressprich, M. R., Willett, R. D., Poshusta, R. D., Saunders, S. C., Davis, H. B. & Gard, G. L. (1988). *Inorg. Chem.* 27, 260–264.
- Radnai, T. & Dorgai, C. (1992). Electrochim. Acta, 37, 1239-1245.
- Šarmaitis, R., Dikinis, V. & Rèzaitè, V. (1996). Plat. Surf. Finish. 83, 53-57.
- Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.
- Siemens (1995). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Stephens, J. S. & Cruickshank, D. W. J. (1970). Acta Cryst. B26, 222-226.
- Stępień, A. & Grabowski, M. J. (1977). Acta Cryst. B33, 2924-2927.