Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Dipotassium tetrachromate(VI), $\mathrm{K}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$

Barbara M. Casari ${ }^{\text {a** }}$ and Vratislav Langer ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Inorganic Chemistry, Göteborg University, SE-41296 Göteborg, Sweden, and ${ }^{\mathbf{b}}$ Department of Chemical and Biological Engineering, Division of Materials and Surface Chemistry, Subdivision of Inorganic Environmental Chemistry, Chalmers University of Technology, SE-41296 Göteborg, Sweden Correspondence e-mail: casari@chem.gu.se

Received 30 August 2005
Accepted 1 November 2005
Online 30 November 2005

The structure of dipotassium tetrachromium(VI) tridecaoxide, $\mathrm{K}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$, has been determined from single-crystal X-ray data collected at 173 (2) K on a racemically twinned crystal with monoclinic $P c$ space-group symmetry. The structure is composed of discrete $\left[\mathrm{Cr}_{4} \mathrm{O}_{13}\right]^{2-}$ zigzag chains held together by the charge-balancing potassium ions. The conformations adopted by the tetrachromate anion in alkali metal salts and $\mathrm{Cr}_{8} \mathrm{O}_{21}$ are different and can be divided into three categories.

Comment

CrO_{3} derivatives are a field of current interest for surface finishing, which proceeds in systems containing CrO_{3} dissolved in water. The structure of the predominant species in chromium electroplating baths has been investigated extensively (Radnai \& Dorgai, 1992; S̆armaitis et al., 1996; Çengeloglu et al., 2003). These compounds are also continuing to attract interest (Carlsen et al., 1995; Islam et al., 2005; Karunakaran \& Suresh, 2004) as they represent the most widely used group of oxidizing agents in organic chemistry, able to oxidize almost every organic functional group (Cainelli \& Cardillo, 1984). Chromic acid is a common reagent but the active species in the oxidizing solutions may vary depending on the reaction conditions. The polymerization of the $\left[\mathrm{CrO}_{4}\right]^{2-}$ units into corner-sharing dimers, trimers or longer chains is pH and concentration dependent (S̆armaitis et al., 1996). The deformation of the CrO_{4} tetrahedra increases with the length of the chains (Gili \& Lorenzo-Louis, 1999). Pressprich et al. (1988) studied and compared the $\mathrm{Cr}-\mathrm{O}$ bond lengths within anions of the formula $\left[\mathrm{Cr}_{n} \mathrm{O}_{3 n+1}\right]^{2-}$. They found that, with increasing polymerization, the average bridging bond length increases, while the average non-bridging bond length decreases. The structure of CrO_{3} (Hanic \& Stempelová, 1960; Stephens \& Cruickshank, 1970) consists of infinite chains of corner-sharing CrO_{4} tetrahedra, with the bridging $\mathrm{Cr}-\mathrm{O}$ distances $0.15 \AA$ longer than the mean terminal distance, resulting in deformed CrO_{4} units. The structures of trichromate compounds consist
of $\left[\mathrm{Cr}_{3} \mathrm{O}_{10}\right]^{2-}$ anions, together with inorganic cations (Mattes \& Meschede, 1973; Kolitsch, 2003; Blum et al., 1979; Blum \& Guitel, 1980; Löfgren, 1974) or organic cations (Ding et al., 2004; Stępień \& Grabowski, 1977; Garrison et al., 2001; Luis et al., 1995; Fossé et al., 2001). In these structures, the $\left[\mathrm{Cr}_{3} \mathrm{O}_{10}\right]^{2-}$ units adopt different conformations as a result of the diversity in packing (Casari \& Langer, 2006).

Four compounds containing the tetrachromate unit have been structurally characterized before now, including three alkali metal salts and one mixed-valence binary oxide. The chemical analogues $\mathrm{K}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$ (Golovachev et al., 1970; Kuz'min et al., 1972), $\mathrm{Rb}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$ (Löfgren, 1971, 1973) and $\mathrm{Cs}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$ (Kolitsch, 2004) all belong to the monoclinic system, and have space groups $P c, P 2_{1} / c$ and $P 2_{1} / n$, respectively. Blum \& Tran Qui (1979) reported indexed powder diffraction data on $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$ and assigned the space group to be $P 2_{1} / c$, as determined for $\mathrm{Rb}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$ (Löfgren, 1973) and unpublished work on $\mathrm{K}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$ by Löfgren. Doubts about both the space-group assignment and the unit-cell parameters of the $\mathrm{K}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$ structure were expressed by Kolitsch (2004). Furthermore, neither s.u. values nor anisotropic displacement parameters are given in the papers (Golovachev et al., 1970; Kuz'min et al., 1972), and an R value of 0.108 was reported, based on film data. We present here a redetermination of the structure of $\mathrm{K}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$.

The $\mathrm{K}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$ structure belongs to the non-centrosymmetric space group $P c$, while the other three chemical analogues belong to space group $P 2_{1} / c$, with unit cells doubled in the a direction (Löfgren, 1973; Kolitsch, 2004; Blum \& Tran Qui, 1979). The reciprocal space was searched carefully for weak extra reflections, especially for $h=(2 n-1) / 2$, but without success. The crystal under investigation was twinned by an inversion operation and the twin volume ratio was refined to 0.64 (3)/0.36 (3).

There are one discrete chromate tetramer and two nonequivalent potassium ions in the asymmetric unit of $\mathrm{K}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$ (Fig. 1). The tetrachromate ion, $\left[\mathrm{Cr}_{4} \mathrm{O}_{13}\right]^{2-}$, is composed of a chain of four CrO_{4} tetrahedra, joined by shared corners. The $\mathrm{Cr}-\mathrm{O}$ bridging distances, can be divided into two groups (Table 1). The two terminal CrO_{4} units have longer $\mathrm{Cr}-\mathrm{O}$ bridging distances [mean 1.834 (4) \AA] than the two inner units [mean 1.74 (4) \AA]. The non-bridging $\mathrm{Cr}-\mathrm{O}$ bonding distances

Figure 1
The asymmetric unit of $\mathrm{K}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$, with atomic displacement ellipsoids drawn at the 50% probability level.

Figure 2
The packing in $\mathrm{K}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$.

Figure 3
A comparison of the packing in (a) $\mathrm{Cs}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$ (Kolitsch, 2004), (b) $\mathrm{Rb}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$ (Löfgren, 1973) and (c) $\mathrm{K}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$ (this work). The numbers 1 and 2 denote $M 1-M 1$ and $M 2-M 2$ cation pairs in (b) and (c).

Figure 4
The configuration of $\left[\mathrm{Cr}_{4} \mathrm{O}_{13}\right]^{2-}$ chains in (a) $\mathrm{K}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$ (this paper), (b) $\mathrm{Cs}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$ (Kolitsch, 2004) and (c) $\mathrm{Cr}_{8} \mathrm{O}_{21}$ (Norby et al., 1991).
are significantly shorter [mean 1.605 (6) Å] (Fig. 1 and Table 1). Despite the variation of bond lengths, the mean $\mathrm{Cr}-$ O distance within the individual tetrahedra remains constant $\left[1.66\right.$ (5) \AA]. The $\left[\mathrm{Cr}_{4} \mathrm{O}_{13}\right]^{2-}$ anions form isolated zigzag chains in the c direction, whose charge is counterbalanced by the intercalating potassium ions (Fig. 2).

The two cations, K1 and K2, are irregularly coordinated (within $3.28 \AA$) by 11 and 10 O atoms, respectively (Table 1), but have similar mean $\mathrm{K}-\mathrm{O}$ bond lengths [2.96 (3) \AA]. The O atoms neighbouring each potassium ion belong to six different tetrachromate chains. The relatively high potassium coordination, compared with the ninefold coordination in $\mathrm{K}_{2} \mathrm{Cr}_{3} \mathrm{O}_{10}$ (Blum et al., 1979), may be attributed to the high oxygen/ potassium ratio (Löfgren, 1973) or to the packing features, as in the case of the 11-coordinate ammonium ions in $\alpha-\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{3} \mathrm{O}_{10}$ (Casari \& Langer, 2006).

Comparing the structural arrangement in the tetrachromate analogues, it is evident that $\mathrm{Cs}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$ (Fig. 3a) differs from $\mathrm{Rb}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$ and $\mathrm{K}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$ (Figs. $3 b$ and $3 c$). The latter are quite similar but contain different cation-cation distances for the $\mathrm{Rb} 1-\mathrm{Rb} 1, \mathrm{Rb} 2-\mathrm{Rb} 2, \mathrm{~K} 1-\mathrm{K} 1$ and $\mathrm{K} 2-\mathrm{K} 2$ pairs (Figs. $3 b$ and $3 c$). These distances vary by 0.111 (3) \AA in $\mathrm{Rb}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$ and 0.038 (4) \AA in $\mathrm{K}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$. Furthermore, every other tetrachromate group is rotated in $\mathrm{Rb}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$ compared with $\mathrm{K}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$, but the shapes of the tetrachromate chains are almost the same (Fig. 4a). In $\mathrm{Cs}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$, the packing of the [$\left.\mathrm{Cr}_{4} \mathrm{O}_{13}\right]^{2-}$ anions and cations is different, as is the shape of the chromate chain (Fig. 4b). Structural data have so far been determined for only one other compound containing the [$\left.\mathrm{Cr}_{4} \mathrm{O}_{13}\right]^{2-}$ unit, i.e. the mixed-valence $\mathrm{Cr}_{8} \mathrm{O}_{21}$ oxide, which is better described as $\mathrm{Cr}_{2}^{\mathrm{III}}\left(\mathrm{Cr}^{\mathrm{VI}} \mathrm{O}_{4}\right)_{2}\left(\mathrm{Cr}_{4}^{\mathrm{VI}} \mathrm{O}_{13}\right)$ (Norby et al., 1991). In this compound, the tetrachromate chain adopts a third conformation (Fig. $4 c$), resembling a section of the onedimensional chains in CrO_{3} (Hanic \& S̆tempelová, 1960), except for the $\mathrm{Cr}-\mathrm{O}-\mathrm{Cr}$ angle of $180.0(7)^{\circ}$.

Values of the $\mathrm{Cr} 1-\mathrm{Cr} 2-\mathrm{Cr} 3-\mathrm{Cr} 4$ torsion angles, and the $\mathrm{Cr} 1-\mathrm{Cr} 2-\mathrm{Cr} 3$ and $\mathrm{Cr} 2-\mathrm{Cr} 3-\mathrm{Cr} 4$ angles in tetrachromate structures, are presented in Table 2. In the nearly planar tetrachromate units, the $\mathrm{Cr} 1-\mathrm{Cr} 2-\mathrm{Cr} 3$ and $\mathrm{Cr} 2-\mathrm{Cr} 3-\mathrm{Cr} 4$ angles seem to occur in pairs of a small and a large angle. A combination of two extreme values [86.48 (2) and 127.29 (2) ${ }^{\circ}$] is encountered in the $\mathrm{Cs}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$ structure (Kolitsch, 2004). The $\mathrm{Cr} 1-\mathrm{Cr} 2-\mathrm{Cr} 3$ angles have also been examined in trichromates (Casari \& Langer, 2006), which interestingly showed a range of angles between 86.85 (2) and 127.73 (4) ${ }^{\circ}$.

In summary, the structure of $\mathrm{K}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$ has been redetermined from a racemic twinned crystal and it has been shown that, even if the structure shows similarities with $\mathrm{Rb}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$ (Löfgren, 1973), the compounds are different enough to lead to a different unit cell and space group.

Experimental

Crystals of $\mathrm{K}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$ were formed during an attempt to prepare $\mathrm{Ce}\left(\mathrm{CrO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ and/or $\mathrm{Ce}\left(\mathrm{CrO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} . \mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(1.50 \mathrm{~g}$, $3.75 \mathrm{mmol})$ was dissolved in water $(10 \mathrm{ml})$ and $\mathrm{Ce}(\mathrm{OH})_{4}$ was precipitated with 15 M ammonia. $\mathrm{Ce}(\mathrm{OH})_{4}(0.12 \mathrm{~g} 0.76 \mathrm{mmol})$ was added to a saturated solution of $\mathrm{K}_{2} \mathrm{CrO}_{4}(1.5 \mathrm{ml})$, and then concentrated
sulfuric acid was added until the cerium hydroxide was completely dissolved. This particular sample was left covered and unguarded and dark-orange-red crystals of $\mathrm{K}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$, suitable for single-crystal X -ray analysis, were obtained after nine months.

Crystal data

$\mathrm{K}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$

$M_{r}=494.20$
Monoclinic, $P c$
$a=8.6165$ (2) Å
$b=7.4725$ (1) \AA
$c=9.2811$ (3) A
$\beta=92.746(2)^{\circ}$
$V=596.89$ (3) \AA^{3}
$Z=2$
$D_{x}=2.750 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens SMART 1K CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
$T_{\text {min }}=0.782, T_{\text {max }}=0.847$
7800 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.105$
$S=1.01$
4076 reflections
173 parameters
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0471 P)^{2}\right.$
$+0.0614 P]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$

Mo $K \alpha$ radiation
Cell parameters from 3954 reflections
$\theta=2.4-33.0^{\circ}$
$\mu=4.30 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Rhomb, orange-red
$0.06 \times 0.06 \times 0.04 \mathrm{~mm}$

4076 independent reflections
3268 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.045$
$\theta_{\text {max }}=33.0^{\circ}$
$h=-13 \rightarrow 13$
$k=-11 \rightarrow 10$
$l=-14 \rightarrow 13$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.69 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.84 \mathrm{e} \AA^{-3}$
Absolute structure: Flack (1983),
1935 Friedel pairs
Flack parameter: 0.64 (3)

Table 1
Selected interatomic distances (A).

Cr1-O11	1.596 (4)	K1-O14 ${ }^{\text {ii }}$	3.189 (5)
Cr1-O12	1.835 (4)	$\mathrm{K} 1-\mathrm{O} 21{ }^{\text {iii }}$	2.884 (5)
Cr1-O13	1.605 (4)	K1-O21	3.273 (5)
Cr1-O14	1.604 (5)	K1-O23	3.094 (4)
$\mathrm{Cr} 2-\mathrm{O} 12$	1.719 (4)	$\mathrm{K} 1-\mathrm{O} 41^{\text {iv }}$	2.768 (5)
$\mathrm{Cr} 2-\mathrm{O} 21$	1.594 (4)	K1-O42 ${ }^{\text {v }}$	2.777 (5)
$\mathrm{Cr} 2-\mathrm{O} 22$	1.590 (5)	K1-O43	3.188 (4)
$\mathrm{Cr} 2-\mathrm{O} 23$	1.753 (4)	K1-O44	2.921 (4)
$\mathrm{Cr} 3-\mathrm{O} 23$	1.783 (4)	K2-O11	2.751 (5)
Cr3-O31	1.582 (4)	K2-O12 ${ }^{\text {vi }}$	3.116 (4)
Cr3-O32	1.572 (4)	$\mathrm{K} 2-\mathrm{O} 13^{\text {vi }}$	2.892 (4)
Cr3-O43	1.694 (4)	K2-O14 ${ }^{\text {vii }}$	2.740 (5)
Cr4-O41	1.607 (5)	$\mathrm{K} 2-\mathrm{O} 31{ }^{\text {iv }}$	2.896 (4)
Cr4-O42	1.604 (4)	K2-O31	3.246 (5)
Cr4-O43	1.833 (4)	K2-O32	2.988 (4)
Cr4-O44	1.615 (4)	K2-O42 ${ }^{\text {viii }}$	3.003 (5)
$\mathrm{K} 1-\mathrm{O} 11^{\text {i }}$	3.106 (5)	$\mathrm{K} 2-\mathrm{O} 44^{\text {ix }}$	2.825 (4)
$\mathrm{K} 1-\mathrm{O} 13^{\text {ii }}$	2.790 (5)	$\mathrm{K} 2-\mathrm{O} 44^{\text {viii }}$	2.937 (5)
$\mathrm{K} 1-\mathrm{O} 13^{\text {i }}$	2.831 (5)		

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT and SADABS (Sheldrick, 2002); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: $S H E L X T L$; molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXTL.

Table 2
A comparison of intrapolyhedral angles $\left({ }^{\circ}\right)$ for the different conformations of the $\left[\mathrm{Cr}_{4} \mathrm{O}_{13}\right]^{2-}$ units.

Angle	$\mathrm{K}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}{ }^{a}$	$\mathrm{Rb}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}{ }^{b}$	$\mathrm{Cs}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}{ }^{c}$	$\mathrm{Cr}_{8} \mathrm{O}_{21}{ }^{d}$
$\mathrm{Cr} 1-\mathrm{Cr} 2-\mathrm{Cr} 3-\mathrm{Cr} 4$	$172.99(3)$	$172.30(5)$	$177.58(2)$	$180.0(9)$
$\mathrm{Cr} 1-\mathrm{Cr} 2-\mathrm{Cr} 3$	$94.06(3)$	$96.05(5)$	$86.48(2)$	$117.5(5)$
$\mathrm{Cr} 2-\mathrm{Cr} 3-\mathrm{Cr} 4$	$121.45(3)$	$122.33(5)$	$127.29(2)$	$117.5(5)$
$\mathrm{Cr} 2-\mathrm{O}-\mathrm{Cr} 3$	$138.0(3)$	$139.3(4)$	$131.6(2)$	$180.0(7)$

Notes: (a) this work; (b) Löfgren (1973); (c) Kolitsch (2004); (d) Norby et al. (1991).

The authors thank Uwe Kolitsch for a constructive review of an early draft of this paper.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BC1081). Services for accessing these data are described at the back of the journal.

References

Blum, D., Averbuch-Pouchot, M. T. \& Guitel, J. C. (1979). Acta Cryst. B35, 454-456.
Blum, D. \& Guitel, J. C. (1980). Acta Cryst. B36, 135-137.
Blum, D. \& Tran Qui, D. (1979). J. Appl. Cryst. 12, 608-609.
Brandenburg, K. (2000). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.
Bruker (2001). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Cainelli, G. \& Cardillo, G. (1984). Chromium Oxidations in Organic Chemistry. Berlin: Springer.
Carlsen, P. H. J., Kjaerstad, C. \& Aasbø, K. (1995). Acta Chem. Scand. 49, 152154.

Casari, B. M. \& Langer, V. (2006). Solid State Sci. Submitted.
Çengeloglu, Y., Tor, A., Kir, E. \& Ersöz, M. (2003). Desalination, 154, 239-246.
Ding, C. R., Jin, Z. M., Wang, H. B., Hu, M. L. \& Lin, H. (2004). Acta Cryst. C60, m203-m204.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Fossé, N., Joubert, O., Ganne, M. \& Brohan, L. (2001). Solid State Sci. 3, 121132.

Garrison, J. C., Simons, R. S., Talley, J. M., Wesdemiotis, C., Tessier, C. A. \& Youngs, W. J. (2001). Organometallics, 20, 1276-1278.
Gili, P. \& Lorenzo-Louis, P. A. (1999). Coord. Chem. Rev. 193-195, 747-768.
Golovachev, V. P., Kuz'min, E. A., Kharitonov, Yu. A. \& Belov, N. V. (1970). Dokl. Akad. Nauk, 192, 1272-1274.
Hanic, F. \& S̆tempelová, D. (1960). Chem. Zvesti, 14, 165-176.
Islam, M., Saha, B. \& Das, A. K. (2005). J. Mol. Catal. A, 236, 260-266.
Karunakaran, C. \& Suresh, S. (2004). J. Phys. Org. Chem. 17, 88-93.
Kolitsch, U. (2003). Acta Cryst. E59, i164-i166.
Kolitsch, U. (2004). Acta Cryst. C60, i17-i19.
Kuz'min, E. A., Golovachev, V. P., Kharitonov, Yu. A. \& Belov, N. V. (1972). Kristallografiya, 17, 929-933.
Löfgren, P. (1971). Acta Chem. Scand. 25, 3893-3894.
Löfgren, P. (1973). Acta Cryst. B29, 2141-2147.
Löfgren, P. (1974). Chem. Scr. 5, 91-96.
Luis, P. A. L., Martin-Zarza, P., Gili, P., Arrieta, J. M., Germain, G. \& Dupont, L. (1995). Eur. J. Solid State Inorg. Chem. 32, 353-360.

Mattes, R. \& Meschede, W. (1973). Z. Anorg. Allg. Chem. 395, 216-222.
Norby, P., Nørlund Christensen, A., Fjellvåg, H. \& Nielsen, M. (1991). J. Solid State Chem. 94, 281-293.
Pressprich, M. R., Willett, R. D., Poshusta, R. D., Saunders, S. C., Davis, H. B. \& Gard, G. L. (1988). Inorg. Chem. 27, 260-264.
Radnai, T. \& Dorgai, C. (1992). Electrochim. Acta, 37, 1239-1245.
Šarmaitis, R., Dikinis, V. \& Rèzaitè, V. (1996). Plat. Surf. Finish. 83, 53-57.
Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Stephens, J. S. \& Cruickshank, D. W. J. (1970). Acta Cryst. B26, 222-226.
Stępień, A. \& Grabowski, M. J. (1977). Acta Cryst. B33, 2924-2927.

